
Object-oriented Design

[24]

Case study
Let's tie all our new object-oriented knowledge together by going through a few
iterations of object-oriented design on a somewhat real-world example. The system
we'll be modeling is a library catalog. Libraries have been tracking their inventory for
centuries, originally using card catalogs, and, more recently, electronic inventories.
Modern libraries have web-based catalogs that we can query from our home.

Let's start with an analysis. The local librarian has asked us to write a new card
catalog program because their ancient DOS based program is ugly and out of date.
That doesn't give us much detail, but before we start asking for more information,
let's consider what we already know about library catalogs:

Catalogs contain lists of books. People search them to find books on certain subjects,
with specific titles, or by a particular author. Books can be uniquely identified by an
International Standard Book Number (ISBN). Each book has a Dewey Decimal
System (DDS) number assigned to help find it on a particular shelf.

This simple analysis tells us some of the obvious objects in the system. We quickly
identify Book as the most important object, with several attributes already mentioned,
such as author, title, subject, ISBN, and DDS number, and catalog as a sort of
manager for books.

We also notice a few other objects that may or may not need to be modeled in
the system. For cataloging purposes, all we need to search a book by author is an
author_name attribute on the book. But authors are also objects, and we might
want to store some other data about the author. As we ponder this, we might
remember that some books have multiple authors. Suddenly, the idea of having a
single author_name attribute on objects seems a bit silly. A list of authors associated
with each book is clearly a better idea. The relationship between author and book
is clearly association, since you would never say "book is an author" (it's not
inheritance), and saying "book has an author", though grammatically correct, does
not imply that authors are part of books (it's not aggregation). Indeed, any one
author may be associated with multiple books.

We should also pay attention to the noun (nouns are always good candidates for
objects) shelf. Is a shelf an object that needs to be modeled in a cataloging system?
How do we identify an individual shelf. What happens if a book is stored at the end
of one shelf, and later moved to the beginning of the next shelf because another book
was inserted in the previous shelf?

DDS was designed to help locate physical books in a library. As such, storing a
DDS attribute with the book should be enough to locate it, regardless of which shelf
it is stored on. So we can, at least for the moment, remove shelf from our list of
contending objects.

Chapter 1

[25]

Another questionable object in the system is the user. Do we need to know anything
about a specific user? Their name, address, or list of overdue books? So far the
librarian has told us only that they want a catalog; they said nothing about tracking
subscriptions or overdue notices. In the back of our minds, we also note that authors
and users are both specific kinds of people; there might be a useful inheritance
relationship here in the future.

For cataloging purposes, we decide we don't need to identify the user, for now. We
can assume that a user will be searching the catalog, but we don't have to actively
model them in the system, beyond providing an interface that allows them to search.

We have identified a few attributes on the book, but what properties does a catalog
have? Does any one library have more than one catalog? Do we need to uniquely
identify them? Obviously, the catalog has to have a list of the books it contains,
somehow, but this list is probably not part of the public interface.

What about behaviors? The catalog clearly needs a search method, possibly separate
ones for authors, titles, and subjects. Are there any behaviors on books? Would it
need a preview method? Or could preview be identified by a first pages attribute,
instead of a method?

The questions in the preceding discussion are all part of the object-oriented analysis
phase. But intermixed with the questions, we have already identified a few key
objects that are part of the design. Indeed, what you have just seen is several micro-
iterations between analysis and design. Likely, these iterations would all occur in
an initial meeting with the librarian. Before this meeting, however, we can already
sketch out a most basic design for the objects we have concretely identified:

Object-oriented Design

[26]

Armed with this basic diagram and a pencil to interactively improve it, we meet
up with the librarian. They tell us that this is a good start, but libraries don't serve
only books, they also have DVDs, magazines, and CDs, none of which have an ISBN
or DDS number. All of these types of items can be uniquely identified by a UPC
number, though. We remind the librarian that they have to find the items on the
shelf, and these items probably aren't organized by UPC. The librarian explains that
each type is organized in a different way. The CDs are mostly audio books and they
only have a couple dozen in stock, so they are organized by the author's last name.
DVDs are divided into genre and further organized by title. Magazines are organized
by title and then refined by volume and issue number. Books are, as we had guessed,
organized by DDS number.

With no previous object-oriented design experience, we might consider adding
separate lists of DVDs, CDs, magazines, and books to our catalog, and search each
one in turn. The trouble is, except for certain extended attributes, and identifying the
physical location of the item, these items all behave in much the same. This is a job
for inheritance! We quickly update our UML diagram:

The librarian understands the gist of our sketched diagram, but is a bit confused
by the locate functionality. We explain using a specific use case where the user is
searching for the word "bunnies". The user first sends a search request to the catalog.
The catalog queries its internal list of items and finds a book and a DVD with
"bunnies" in the title. At this point, the catalog doesn't care if it is holding a DVD,
book, CD or magazine; all items are the same, as far as the catalog is concerned.
But the user wants to know how to find the physical items, so the catalog would be
remiss if it simply returned a list of titles. So it calls the locate method on the two
items it has uncovered. The book's locate method returns a DDS number that can
be used to find the shelf holding the book. The DVD is located by returning the
genre and title of the DVD. The user can then visit the DVD section, find the
section containing that genre, and find the specific DVD as sorted by title.

Chapter 1

[27]

As we explain, we sketch a UML sequence diagram explaining how the various
objects are communicating:

Where class diagrams describe the relationships between classes, sequence diagrams
describe specific sequences of messages passed between objects. The dashed line
hanging from each object is a lifeline describing the lifetime of the object. The wider
boxes on each lifeline represent active processing in that object (where there's no box,
the object is basically sitting idle, waiting for something to happen). The horizontal
arrows between the lifelines indicate specific messages. The solid arrows represent
methods being called, while the dashed arrows with solid heads represent the
method return values. The half arrowheads indicate asynchronous messages sent to
or from an object. An asynchronous message typically means the first object calls a
method on the second object which returns immediately. After some processing, the
second object calls a method on the first object to give it a value. This is in contrast
to normal method calls, which do the processing in the method, and return a
value immediately.

Object-oriented Design

[28]

Sequence diagrams, like all UML diagrams, are best used when they are needed.
There is no point in drawing a UML diagram for the sake of drawing a diagram.
But when you need to communicate a series of interactions between two objects,
the sequence diagram is a very useful tool.

Unfortunately, our class diagram so far is still a messy design. We notice that actors
on DVDs and artists on CDs are all types of people, but are being treated differently
from the book authors. The librarian also reminds us that most of their CDs are
audio books, which have authors instead of artists.

How can we deal with different kinds of people that contribute to a title? An obvious
implementation is to create a Person class with the person's name and other relevant
details and then create subclasses of this for the artists, authors, and actors. But is
inheritance really necessary here? For searching and cataloging purposes, we don't
really care that acting and writing are two very different activities. If we were doing
an economic simulation, it would make sense to give separate actor and author
classes different calculate_income and perform_job methods, but for cataloging
purposes, it is probably enough to know how the person contributed to the item.
We recognize that all items have one or more Contributor objects, so we move the
author relationship from the book to its parent class:

The multiplicity of the Contributor/LibraryItem relationship is many-to-many, as
indicated by the * at each end of the relationship. Any one library item might have
more than one contributor (for example, several actors and a director on DVD). And
many authors write many books, so they would be attached to multiple library items.

This little change, while it looks a bit cleaner and simpler has lost some vital
information. We can still tell who contributed to a specific library item, but we don't
know how they contributed. Were they the director or an actor? Did they write the
audio book, or were they the voice that narrated the book?

Chapter 1

[29]

It would be nice if we could just add a contributor_type attribute on the
Contributor class, but this will fall apart when dealing with multi-talented people
who have both authored books and directed movies.

One option is to add attributes to each of our LibraryItem subclasses that hold the
information we need, such as Author on Book, or Artist on CD, and then make the
relationship to those properties all point to the Contributor class. The problem with
this is that we lose a lot of polymorphic elegance. If we want to list the contributors
to an item, we have to look for specific attributes on that item, such as Authors
or Actors. We can alleviate this by adding a GetContributors method on the
LibraryItem class that subclasses can override. Then the catalog never has to know
what attributes the objects are querying; we've abstracted the public interface:

Just looking at this class diagram, it feels like we are doing something wrong. It is
bulky and fragile. It may do everything we need, but it feels like it will be hard to
maintain or extend. There are too many relationships, and too many classes would
be affected by modifications to any one class. It looks like spaghetti and meatballs.

Object-oriented Design

[30]

Now that we've explored inheritance as an option, and found it wanting, we might
look back at our previous composition-based diagram, where Contributor was
attached directly to LibraryItem. With some thought, we can see that we actually
only need to add one more relationship to a brand-new class to identify the type of
contributor. This is an important step in object-oriented design. We are now adding a
class to the design that is intended to support the other objects, rather than modeling
any part of the initial requirements. We are refactoring the design to facilitate the
objects in the system, rather than objects in real life. Refactoring is an essential
process in the maintenance of a program or design. The goal of refactoring is to
improve the design by moving code around, removing duplicate code or complex
relationships in favor of simpler, more elegant designs.

This new class is composed of a Contributor and an extra attribute identifying
the type of contribution the person has made to the given LibraryItem. There can
be many such contributions to a particular LibraryItem, and one contributor can
contribute in the same way to different items. The diagram communicates this
design very well:

At first, this composition relationship looks less natural than the inheritance-
based relationships. But it has the advantage of allowing us to add new types of
contributions without adding a new class to the design. Inheritance is most useful
when the subclasses have some kind of specialization. Specialization is creating
or changing attributes or behaviors on the subclass to make it somehow different
from the parent class. It seems silly to create a bunch of empty classes solely for
identifying different types of objects (this attitude is less prevalent among Java and
other "everything is an object" programmers, but it is common among more practical
Python designers). If we look at the inheritance version of the diagram, we can see a
bunch of subclasses that don't actually do anything:

Chapter 1

[31]

Sometimes it is important to recognize when not to use object-oriented principles.
This example of when not to use inheritance is a good reminder that objects are just
tools, and not rules.

Exercises
This is a practical book, not a textbook. As such, I'm not about to assign you a bunch
of fake object-oriented analysis problems to create designs for. Instead, I want to give
you some things to think about that you can apply to your own projects. If you have
previous object-oriented experience, you won't need to put much effort into these.
But they are useful mental exercises if you've been using Python for a while but
never really cared about all that class stuff.

First, think about a recent programming project you've completed. Identify the most
prominent object in the design. Try to think of as many attributes for this object as
possible. Did it have: Color? Weight? Size? Profit? Cost? Name? ID number? Price?
Style? Think about the attribute types. Were they primitives or classes? Were some
of those attributes actually behaviors in disguise? Sometimes what looks like data
is actually calculated from other data on the object, and you can use a method to
do those calculations. What other methods or behaviors did the object have?
What objects called those methods. What kinds of relationships did they have
to this object?

Object-oriented Design

[32]

Now think about an upcoming project. It doesn't matter what the project is; it might
be a fun free-time project or a multi-million dollar contract. It doesn't have to be a
complete application; it could just be one subsystem. Perform a basic object-oriented
analysis. Identify the requirements and the interacting objects. Sketch out a class
diagram featuring the very highest level of abstraction on that system. Identify
the major interacting objects. Identify minor supporting objects. Go into detail
for the attributes and methods of some of the most interesting ones. Take different
objects to different levels of abstraction. Look for places you can use inheritance
or composition. Look for places you should avoid inheritance.

The goal is not to design a system (although you're certainly welcome to do so if
inclination meets both ambition and available time). The goal is to think about
object-oriented designs. Focusing on projects that you have worked on or are
expecting to work on in the future simply makes it real.

Now visit your favorite search engine and look up some tutorials on UML. There are
dozens, so find the one that suits your preferred method of study. Sketch some class
diagrams or a sequence diagram for the objects you identified earlier. Don't get too
hung up on memorizing the syntax (after all, if it is important, you can always look it
up again), just get a feel for the language. Something will stay lodged in your brain,
and it can make communicating a bit easier if you can quickly sketch a diagram for
your next OOP discussion.

Summary
In this chapter, we took a whirlwind tour through the terminology of the object-
oriented paradigm, focusing on object-oriented design. We learned how to separate
different objects into a taxonomy of different classes and to describe the attributes
and behaviors of those objects via the class interface. In particular, we covered:

Classes and objects
Abstraction, encapsulation, and information hiding
Designing a public interface
Object relations: association, composition, and inheritance
Basic UML syntax for fun and communication

In the next chapter, we'll explore how to implement classes and methods in Python.

•

•

•

•

•

